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2. The specific heat-temperature curves of the various nitromethanes
showed distinct irregularities, which indicate the presence of several species
of molecules in the liquid.

3. Measurements of vapor pressure and density failed to show corre-
sponding irregularities.

4. A nitromethane gel with phosphorus pentoxide and a trace of water
is described.

5. 'The probability of an abnormal boiling point for nitromethane which
has been subjected to intensive drying is discussed.
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In order to account for the large temperature coefficient of the rate of
ordinary chemical reactions, it seems impossible to escape the conclusion
of Arrhenius! that the molecules which actually enter into the reaction
must be in an activated form containing considerably more energy than
the normal molecule.? In accordance with this view of Arrhenius, it has
been customary to use the following equations to express the rates of first
order unimolecular and second order bimolecular reactions, respectively,
as functions of the temperature

—dC/dt = kC = k' ¢—E/RT C (1

—dC/dt = kCC’ = k'T'/» e—(E+ EN/RT] CC’ 2)
where E or (E + E’) are the energy contents per mole of the activated
molecules entering into the reaction.?

Since the older derivations of these equations have involved special
assumptions, a somewhat more elaborate analysis of the justification for
the equations will not be out of place. We shall find that the magnitudes

1 Arrhenius, Z. physik. Chem., 4, 226 (1889).

2 The transition of the molecule from the normal to the activated form may be
merely a change to 2 higher quantum state or other tautomer of high energy content
or may involve dissociation or other change which is usually regarded as chemical
In the sense of the Arrhenius formulation, the “‘residual molecules’ of Rice, Fryling and
Wesolowski [THIS JOURNAL, 46, 2405 (1924)] would often seem to be one special kind
of activated molecules.

8 The actual equation proposed by Arrhenius had for any order of reaction the form
d log % E

dT = RT
T'/?, however, in Equation 2 for bimolecular reactions is customary, since the number
of collisions between molecules is proportional to this power of the temperature.

, where E is the total energy of activation. The introduction of the term



Nov., 1925 TEMPERATURE AND REACTION RATE 2653

of the necessary energy of activation will be given, approximately at least,
by Equations 1 and 2 under a wider variety of conditions than have hitherto
been considered. ‘This is of importance in connection with the difficulties
that are encountered in finding mechanisms of activation that will supply
fast enough the large energies calculated from these equations.* It would
be an easy way out of these difficulties if only we could deny the validity
of the Arrhenius equation, but this does not now seem possible.

Part I. Unimolecular Reactions

1. Introduction.—Derivations of Equation 1 for the rate of a uni-
molecular reaction have usually been based on one or the other of two pos-
sible but not inevitable assumptions as to the mechanism of activation.
One class of proofs assumes a mechanism of activation so fast compared
with the rate of reaction as to maintain the full Maxwell-Boltzmann quota
of molecules in the activated state, and since this quota is proportional to
e~ E/RT it is easy to see why this factor then enters into the expression for
reaction velocity.® A second class of proofs assumes that the mechanism
of activation consists in the absorption of radiation of the frequency given
by the quantum relation E = Nhy, and since the density of radiation of
frequency » is approximately proportional to e~ "/*T it is again easy to
see why the dependence of the rate on temperature should be that given
by the Arrhenius equation.®

In our present treatment, we shall not have to assume a velocity of ac-
tivation necessarily fast enough to maintain the full Maxwell-Boltzmann
quota of activated molecules, nor assume any specific mechanism for the
activational process, We shall, however, assume that the wnactivated
molecules are in statistical equilibrium and that the specific rates at which
molecules pass from one state to another are not affected by the progress

4 See, for example, Tolman, THuIs JOURNAL, 47, 1524 (1925).

§ The assumption that the full quota of activated molecules is maintained is appar-
ently present, for example, in the derivations of Marcelin [Ann. Physik, 3, 120 (1915)],
Rice [Brit. Assoc. Advancement Sci. Rept., 1915, 397], Rodebush [THIS JOURNAL, 45,
606 (1923)], and Christiansen and Kramers [Z. physik. Chem., 104, 451 (1923)]; also
indeed in the original quasi-thermodynamical derivation of Arrhenius.

In the derivations of Marcelin, Rice and Rodebush no hypothesis is made as to
the mechanism of the activational process, there is merely the tacit assumption that it
is fast enough to maintain statistical equilibrium as far as concerns the different states of
the reactant. In the derivation of Christiansen and Kramers it is assumed that the
full quota of activated molecules is maintained by collisions of the second kind between °
normal molecules of the reactant and activated molecules of the product which have
not yet fallen to their normal state. In accordance with their treatment the reaction
will not continue first order unless the assumed mechanism does suffice to maintain the
full quota.

¢ This assumption is present in the radiation theory in its simple form as first given
by Perrin and W. C. McC. Lewis and also in its later more elaborated forms. See
Tolman, THIS JOURNAL, 42, 2506 (1920); and Ref. 4 above.
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of the reaction. It is further to be noted that our proof is general enough
to allow for a series of different activated and unactivated states.

2. A Relation between the Velocities of Reverse Processes.—In
carrying out our treatment we shall first need to obtain an important rela-
tion between the velocities of reverse processes which can be derived with
the help of the principle of microscopic reversibility. ‘T'he best formulation
and precise range of validity of this principle have not yet been determined;;
nevertheless, the principle is one that has found increasing application
in chemical kinetics, and we need not hesitate to use it in the present con-
nection.” If we have a system in statistical equilibrium, the principle
requires not only that the number of molecules in any given state shall
remain constant, but that the number leaving that state in unit time by
any particular path shall be made up by the entrance of an equal number
of molecules by the reverse of that particular path.

Consider now a system in statistical equilibrium and let C, and C, be
the concentrations of molecules in two states, S; initial state and S,
activated state having, respectively, the energies per mole E; and E,.
We may obviously put the rate at which molecules are passing from state
S; to .S, proportional to the concentration C;, and the number passing in
the reverse direction proportional to C,, as given by the equations

0C,/0 = BiC;, and —3C,/0t = auiCs 3)
where for convenience we might call 3,, a coefficient of activation and
ay; the corresponding coefficient of deactivation. Since, however, the
system is in statistical equilibrium, the number of molecules in each state
is a constant, and if we assume the principle of microscopic reversibility,
this constancy is maintained by an exact equality in the numbers of mole-
cules passing in the reverse directions between each pair of states, which
leads to the equation

Biaci = auiCa (4)
The two concentrations, however, are connected in accordance with the
Maxwell-Boltzmann distribution law by the equation

g— - %’e—wm/m) (5)

where p, and p; are the a priori probabilities of the two states and E,,
is the energy necessary to raise the molecule from state .S; to S,. Sub-
stituting in (4) we obtain the following very important relation between
the coefficients of activation and deactivation

Bia = aai% e— (Ew/RT) (6)
This significant equation makes no assumption as to the mechanism
of the activational and deactivational processes and the coefficients 8,

7 For references to the history of this principle see Tolman, Proc. Nai. Acad. Sci.,
11, 436 (1925).
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and «,; may be dependent on the total concentration of molecules present
if the mechanism is collisional, or on the concentration of radiant energy
if this is involved, or on whatever factors may be operative. It should also
be observed that the formulation of the proof and the final equation are
just as valid in case the classical-theory statistical mechanics or the quan-
tum-theory statistical mechanics is applicable to the problem at hand.
In the first case, the a priori probabilities p, and p, can be taken propor-
tional to infinitesimal phase areas of the magnitude dg.....dp,, corre-
sponding to different microscopic states of the molecule; in the second case
they can be taken proportional to finite areas of the magnitude k" corre-
sponding to different quantum states.

It must further be noted that Equation 6 has been rigorously derived
only for a system in statistical equilibrium. We should usually expect,
however, that the specific rates at which molecules pass from one state
to another will not be greatly affected by the deviation of the system from
equilibrium, and in what follows we shall assume that Equation 6 is valid at
any stage of the reaction up to complete equilibrium. It should be noted
that this assumption is the less questionable, since it only necessitates the
constancy of the ratio of 8;, and a,,, rather than their individual constancy.

3. Rate of Activation and Unimolecular Reaction.—We are now ready
to treat the general case of first-order unimolecular reactions in which
the total process consists in the passage of molecules from the inactive to
the active condition followed by reaction on the part of a certain fraction
of the activated molecules. If we call states S; unactivated and states
S, activated, we may write for the rate at which molecules are being

activated
dcact/dt = Z.)E Ba‘aci (7)

A certain fraction of the molecules which arrive in any activated state
S, may react and the remainder fall back into the unactivated states.

For the fraction 6, that reacts we may evidently write
z Qaf
f

8. = E Qgf + E Qag (8)

where Eaa, and Eaaf are the total spemﬁc rates at which molecules pass

from the actlvated state S, back to any of the initial unactwated states
S,y or forward to any of the final unactivated states Sy of the products of
the reaction.®

Introducing the fraction of the activated molecules which react into
Equation 7 for the rate of activation, we obtain for the rate of a uni-

8 In case the reaction is an isomeric change, the final states .5y will be those of a
single molecule. In cases of dissociation the designation Sy stands for a simultaneous
condition of more than one molecule. In the formulation given we have felt justified in
neglecting the passage of molecules from one activated state to another activated state.
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molecular reaction
—dC/dt = 2 2 84 Bia C; 9

and so far have introduced no hypothesis except our general picture as
to the nature of the process,
If we now assume statistical equilibrium for the unactivated molecules,
we niay substitute for C; the Maxwell-Boltzmann expression
¢, = Cpie= (B/RD)

"7 2 pe—(E/RD (10)
where C is the total concentration of unactivated molecules which is of
course sensibly equal to the concentration of reactant. Furthermore,
assuming the validity of the result obtained from the principle of micro-
scopic reversibility, we may substitute for 8, the expression given by
Equation 6.

Bia = aa,-%‘ o— (Eia/RT) 11)

1

We obtain

550, g po = Ea/RD)
_4dC _ i a Seibe c (12)
dt T p; e— (Ei/RT) ’

Or for the specific reaction rate
2 3 04 g po ¢~ (E/RT)
i a

1
c'a % p; e~ (E/RT) 13)

4. Temperature Coeflicient of Unimolecular Reaction Rate.—In order
to obtain the final result in the desired form, we must take a logarithmic
differentiation of this value of 2 with respect to the temperature. We
obtain

2 2 0, cas pa ¢~ Ea/RT) {4108 66 dlog asi , Ea g
dlogh _ 17 ¢ oeibe? ar~ T —ar T rr
ar "k % 7 o= E/RT)
h

—(E; E;
Zhe (E”/RT)%R_T?g

(14)
T pe— (E/RT)
[y

It is evident from the principles of averaging, however, that this may be
rewritten in the form

dlogk _ dlog 0, , dlog aw , Ea _ Ei 15
ar = —ar T ar T Er TR (1%

where the double line indicates that the average is taken for the activated
molecules that actually enter into the reaction, and the single line indicates
the average for the unactivated molecules.

In general, however, we shall expect the first two terms on the right-
hand side of Equation 15 to be small, since by referring to Equation 8
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for the value of 6, we see that both tertus in question contain merely
the temperature coefficients of the specific rates at which molecules fall
from states of high energy content to those of lower energy content. Such
deactivations, however, can occur as far as we can see only through the
loss of energy on collision with other molecules or through the emission
of radiation. The first of these processes has a small temperature coeffi-
cient, since the number of collisions does not change rapidly with the
temperature. ‘The second process can be taken as occurring by a combina-
tion of spontaneous emission and induced emission as shown by Einstein’s
deduction of the Planck radiation law (1917). The rate of spontaneous
emission is unaffected by temperature, while the rate of induced emission
is dependent on the density of radiation of the particular frequency
involved and the temperature coefficient for the combined process can
never be large at ordinary temperatures.®

Assuming, then, that the first two terms are negligible, Equation 15
can be rewritten in the form

dlogk Es— E; E
"71;— = "RT* T RT® (16)
where E is the energy of activation.

Special attention is called to the fact that the quantity E = %, — E;
occurring in Equation 16 which we have called the energy of activation
is the excess of the average energy of the molecules that do react over the
average energy of the unactivated molecules. It should further be noted
that if we do not try to treat the subject as generally as we have done
above, but introduce the common assumption of statistical equilibrium
for all molecules and specific rates of reaction for activated molecules
which are independent of the temperature, the derivation of Equation
16 is then easily shown by the methods used above to be exact, provided
we take E as the difference between the average energy of the molecules
that react and the average energy of all the molecules, - This result is in
agreement with the earlier derivation of the author, which assumed, how-
ever, a special mechanism of activation.!®

¢ For the specific rate of deactivation by emission of radiation we may write aq; =
Aai + Ba: p where Aa: and Ba: are Einstein’s coefficients of spontaneous emission and
induced emission and p is the density of radiation of the frequency » involved. Sub-

s . _ 87 ht 8 7 hwd 1 .
stituting the known relations 4« = = Baiand p = G gwiET =1 and taking
. . ) ehv/kT dlog aq; v 1
the logarithm we obtain, log as: = log oy ) -+ const., 37 " BT AT =1

The maximum value that this temperature coefficient can attain, however, is seen to be
1/T, which is not large compared with the usual values of E/RT®.

10 Tolman, THIS JOURNAL, 42, 2506 (1920).

In connection with the discussion presented in the foregoing paragraph it should be
noted that we may expect the average energy of the unactivated molecules to be prac-
tically the same as the average energy of all the molecules.
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It certainly seems most convenient to continue to use the term ‘‘energy
of activation” or ‘‘heat of activation” in the above sense to mean the
excess of energy which on the awverage has to be supplied to the molecules
that react. Lewis and Smith,'! however, in a recent article have proposed
to re-define the heat of activation as the minimum internal energy which
a molecule must have in order to be able to react. It isevident, however,
that the quantity thus defined is not the one occurring in the Arrhenius
equation, and hence it would seem unfortunate to adopt the proposed
change in definition.!?

5. Final Expression for Unimolecular Reaction Rate.—Returning now
to our original problem, if we integrate Equation 16, neglecting the change
of E with the temperature, we can obtain the original equation we started
out to test

—dC/dT = ¥ e—(E/RT) C )
where &’ is the constant of integration.

‘This completes our analysis of the justification of using the Arrhenius
Equation 1 to calculate energies of activation. It seems evident from an
examination of the assumptions involved in the deduction that the equation
will be approximately correct under a wider variety of conditions than
have hitherto been considered. The result emphasizes the necessity of
finding mechanisms of activation capable of supplying the large energies
calculated from Equation 1.

In this connection the treatment of the maximum rate of activation by
collision recently given by Lewis and Smith!® does not seem entirely satis-
factory. - They assume that the average internal energy of unactivated
molecules might be available as part of the energy E occurring in the
Arrhenius equation, but in accordance with the foregoing treatment, the
quantity E is the excess in the average energy of the molecules that react
over the average energy of the unactivated molecules.

It should be noted also, as already pointed out by the author,* that the
possibility of raising the molecules from their average energy content to
the activated state by d series of collisions which carry the molecules
through intermediate states does not seem a probable method of obtaining
the necessary rates of activation by collision, since to offset the increased
specific rate of activation from an intermediate state, we have the decreased
concentration of molecules in the intermediate state, as well as the possi-
bility of loss of energy by collisions of the second kind.

11 T ewis and Smith, THIS JoURNAL, 47, 1515 (1925).

12 Using the assumptions which were mentioned above as leading to an exact der-
ivation of the Arrhenius equation, but inserting their new definition of the heat of
activation, Lewis and Smith indeed discover (Ref, 11, pp. 1513-1514), as would be ex-
pected, that they do not get an exact derivation of the Arrhenius equation.

13 Ref. 11, pp. 1513-1514.
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Part II. Bimolecular Reactions

The justification for using our original equation (2) for bimolecular
reactions is rather simpler. A bimolecular reaction could result either
from the collision of two molecules which have previously been activated
or from the collision of molecules having more than average kinetic energy,
thus merging the process of activation and reaction. We shall treat the
two cases separately.

1. The Molecules Have Been Previously Activated.—If reaction re-
sults from the collision of molecules which already have been activated, it is
evident that the reaction can be of the second order over a range of concen-
trations only if the rate of activation is fast enough compared with the rate
of reaction, so that the full Maxwell-Boltzmann quota of activated mole-
ctiles is maintained. Hence for the concentration of molecules of kind
M or M’ in a given activated state S, or S,’ we can write the expressions

¢ = Cpoe™Ee/RD) C’ pa’ e—(Ea//RT)

= d G,/ =
*T S pe-@/ED AT 5T T @EIRD an
4 0

where the summations are to be carried out for all possible states. Then,
since the number of collisions between activated molecules is proportional
to the square root of the absolute temperature, we may write for the rate
of reaction
—dC/dt = T2 2 Z koo Co Gy
1/ 4 ' e— [(Ea + Ea')/RT]
T CcC a (z b e—(Ei/RT)) (z b e—(E,-’/RT))

where k,, is a constant depending on the particular pair of activated states
involved, and the double summation in the numerator is to be taken over
all activated states, that is, all states for which 4,4, has an appreciable value.

Carrying out a logarithmic differentiation we obtain
T2 3 3 boyt po pa’ 6= [(Ba+ Ea)/RT] Ba + Ed’

2 2z Rod’ Pa po € BT

dlogk _ dlog TYV: | 1

dT dT % (z b e—(Ei/RT)) (z b e—(E,-’/RT))
11 <
E; ’ E;’
; e— (E;/RT) —%. 3 p’ e~ (E'/RT) %
_ PhemBIRD g PR R 0
S p; e~ (Ei/RT) = p; o— (B//RT)
; §
This can evidently be rewritten in the form
dlogk _dlog 7'+ | Ea + Eo' — Ei + B/ 20)

daT daT RT?
where the double lines indicate an average taken for the molecules that react
and the single line an average taken for all molecules. The numerator in
the last term of Equation 20 is evidently the average energy of activation
which we may denote as previously by E 4+ E’. Integrating, neglecting
the small change in the energy of activation with temperature we can
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evidently obtain the desired equation )

—de/dt = B TV o= R CC @)
where 2’ is a constant of integration. Hence, under these circumstances
the justification for using Equation 2 to calculate energies of activation is
very satisfactory.

2. Activation and Reaction Due to the Same Collision.—In the case
of bimolecular reactions, in addition to the possibility that reaction results
from the collision of previously activated molecules, we have the special
possibility that normal unactivated molecules will react providing they
collide with the proper relative velocity. Such a mechanism could be
regarded as merging the process of activation and reaction, and has
appealed favorably to Hinshelwood.!4

In the present state of our knowledge of molecular mechanics we can
not, of course, specify the precise nature of the collisions which would lead
to reaction. If, however, there are cases in which the suggested merging
of activation and reaction does take place, it would seem reasonable to
assume as a first approximation that reaction occurs for all collisions in
which the component of velocity parallel to the line of centers of the

molecules exceeds a minimum value V. Now it has been shown by
~ 1 MM/ Ve :
Langevin and Rery!® that e™% 2+ 2 RT is the fraction of all collisions

between molecules of molecular weights M and M’ in which this is true.
Hence we may evidently again write for the rate of reaction

—dC/dt = k' Tz e~UE+ E)/RT} CC’ 2)
MM
1y, MM
where E+4+ E /2 T ar £ (21)

In this case the quantity E + E’ would be a sort of minimum rather than
average energy of activation; the minimum and average, however, are not
far apart owing to the form of the Maxwell distribution law. Other
plausible assumptions as to the conditions for the merging of activation
and reaction lead to not very different results.

‘There is no way at the present time of deciding between the two proposed
mechanisms of bimolecular reaction, preliminary activation or activation
through the same collision that leads to reaction. ‘The writer, however,
is inclined to - believe the former alternative the more probable. Both
mechanisms agree with our original equation (2), the energy of activation
being at least as great as the quantity (E + E’).

~ Summary
1. 'The familiar equation
—dC/dt = kC = k' ¢—(E/RT)C (1)
connecting the rate of first-order unimolecular reactions with temperature
14 Hinshelwood and Burk, Proc. Roy. Soc., 106A, 284 (1924). Hinshelwood and

Hughes, J. Chem. Soc., 125, 1841 (1924).
15 Y angevin and Rery, Le Radium, 10, 142 (1913).



Nov., 1925 STRUCTURE OF NICKEL CATALYSTS 2661

and energy of activation has usually been derived either on the assumption
of a rate of activation fast enough to maintain the full Maxwell-Boltzmann
quota of activated molecules, or on the assumption that the activational
process consists in the absorption of radiation. In this article a derivation
has been presented making no specific assumptions either as to the rate or
mechanism of activation, which shows that Equation 1 will be at least
approximately valid under a wide variety of conditions.

2. Derivations have also been presented for the familiar equation

—dC/dt = £ CC' = k' T2 ¢—[(E+ E)/RT] CC’ @
connecting the rate of second-order bimolecular reactions with temperature
and energy of activation, both on the assumption that the reacting mole-
ctiles have received their energies of activation preceding the collision which
leads to reaction, and on the assumption that the processes of activation
and reaction are merged in one collision having sufficient available kinetic
energy.

3. 'These results re-emphasize the necessity of discovering mechanisms
of activation which will supply fast enough the large energies of activation
calculated from Equations 1 and 2.

4. Since the quantity E occurring in Equation 1 is the excess per mole
in the energy of the molecules that react over the average energy of the un-
activated molecules, it cannot be assumed that this average energy is
available as part of the energy of activation.
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The purpose of this investigation was to examine hydrogenation and
dehydrogenation of nickel catalysts, prepared in different ways and with
different activities,! by means of the X-ray powder-diffraction method
to obtain information upon three questions: (1) whether there is a funda-
mental difference in the space lattice; (2) whether there is a fundamental
variation in the particle size; (3) whether X-ray analysis will indicate the
condition of the surface of nickel catalysts.

1 Excellent comparative studies of activity as it depends upon the method of prepa-
ration of the catalyst have been made recently by (a) Armstrong and Hilditch, J. Soc.
Chem. Ind., 42, 217 (1923); (b) 44, 701 (1925); (¢) Thomas, ibid., 42, 21T (1923); (d)
Adkins and Lazier, THIS JOURNAL, 46, 2291 (1924). 'This last paper states that nickel

catalysts which show different hydrogenation and dehydrogenation activities are even
more widely dissimilar in their abilities to break carbon chains.



